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SUMMARY 

To investigate the influences of time scheme, pressure treatment and initial conditions in incompressible fluid 
dynamics, a Stokes problem is solved numerically on a slab geometry within the framework of spectral 
approximation in space. Four algorithms are examined: splitting schemes, influence matrix method, penalty 
formulation and pseudo-spectral space-time technique. It is shown that splitting schemes are less accurate 
than the other processes. Furthermore, the initial field should respect a compatibility condition to avoid 
singularities at the initial time. If it is not possible to build such a compatible field, the numerical procedure has 
to present good damping properties at the first steps of the time integration. 
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1. INTRODUCTION 

The numerical solution of incompressible viscous flows calls for special treatment of pressure 
and continuity equation with the velocity-pressure formulation of the basic equations. Our aim is 
to investigate the influences of time scheme, pressure treatment and initial conditions on the 
numerical solution of the two-dimensional Stokes problem within the context of spectral 
approximation in space, namely Chebyshev polynomials in the x direction and periodic Fourier 
series in the y direction. Several algorithms are used for the time integration and the pressure 
computation. 

Owing to the excellent accuracy of spectral methods, calculations carried out by large fluid 
dynamics codes such as CHANSON' bring up the problem of pressure calculation. Therefore, the 
Stokes problem constitutes a model which contains all the characteristic features of the Navier- 
Stokes equations from the point of view of pressure determination. 
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Section 2 states the Stokes problem, which was previously considered as a test problem at a 
G A M M  workshop held in Louvain-la-Neuve in October 1980. As the Stokes problem is linear, an 
analytical solution may be obtained and it is therefore possible to compare the computed decay- 
rate of the solution to the exact value. In Section 3, the various numerical schemes are described. 
They include the splitting method, the influence matrix technique which imposes a vanishing 
boundary divergence, the penalty formulation and finally the pseudo-spectral space-time 
algorithm. Section 4 introduces two initial velocity fields. The first one, all hough incompressible, 
does not satisfy the compatibility condition. The second velocity field ensures that the 
incompressibility constraint is satisfied with an initial pressure field verifying both Neumann and 
Dirichlet conditions. In Section 5, the numerical results are presented. 

The present analysis shows that the initial and boundary conditions of a mixed (initial and 
boundary value) problem must be compatible in order to avoid singularities at the initial time and 
development of spurious numerical oscillations. If a compatible initial field cannot be found, the 
numerical process must possess good damping properties to cope with the initial singularities 
during the first steps of the time integration. 

2. PROBLEM STATEMENT 

Consider the two-dimensional Stokes problem defined on the infinite slab] in the y direction with 
1x1 d 1. The equations are 

aV - _  - - g r a d p +  vAv 
at 

div v = 0. (2) 
In equations (1) and (2), v is the velocity field, p the pressure and v the kinematic viscosity. The linear 
problem is subject to the boundary conditions v = 0 at x = f 1 and to an initial condition: 
v(x, t = 0). Let us assume periodicity in they direction, such that the solution ofequations (1) and (2) 
may be decomposed into Fourier modes: 

K K 

- K  - K  

K being the cut-off of the Fourier series. 

a particular mode in such a way that we define 
As the complete solution can be obtained by linear superposition, we will restrict our attention to 

v(x, t) = ~ ( x ,  t)ejky, p(x, t )  = Ax, t)ejky (3) 
By insertion of (3) into (1) and (2) and with the change of variables u = U, u = j V ,  p = jj, one obtains 
the following relations: 

au ap z- - - z + ~ ( $ - k 2 ~ )  (4) 

au 
ax 
- + k v = O  

(U and V are the components o f f  andj’ = - 1). 
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The boundary conditions are 

u=u=O,  a t x = + l  (7) 
The initial fields are specified in Section 4. Any solution of equations (4)-(7) may be expanded in 
eigenfunctions: 

m 

~ ( x ,  t )  = - k 1 fi(x)gi(t) (8) 
i =  1 

where the functions f i ( x )  and gi( t )  are 

with 
g i ( t )  = exp ( - apt)  

p i  = (oi - k2)’/’ 

The eigenfunctions f i ( x )  and gi ( t )  are obtained by variable separation. The coefficient oi is the 
decay-rate associated with the ith eigenmode. The theoretical value of oi is obtained from the 
equation 

(13) 
We will restrict ourselves to the calculation of the first eigenmode which is the dominant mode. For 
k = 1, oi =((in)’, so that higher modes are rapidly damped out. The first mode yields 
o1 = 9.313799. 

Four numerical methods will be applied to obtain the solution of equations (4)-(7). The 
comparison of the theoretical value of o1 will be made with the computed decay-rate a,, defined in 
Section 5. 

p i  tan p i  + k tanh k = 0 

3. NUMERICAL SCHEMES 

The numerical methods to be used are all based on a Chebyshev approximation for the spatial 
discretization of the dependent variables. The velocity components and the pressure are expanded 
in series of Chebyshev polynomials of first kind, namely, 

where urn, urn and p ,  are the corresponding time-dependent Chebyshev modes. The classical 
projection methods (Galerkin, Tau, Collocation)’ lead to a system of ordinary differential 
equations. The time integration will be performed by finite differences for the first three algorithms, 
whereas the last one will rest upon Chebyshev pseudo-spectral calculation in time3. 
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3.1. Explicit pressure calculation 

derived from the incompressibility constraint. Therefore, we consider the scheme: 
We will apply to (4)-(7) a splitting scheme using a Poisson equation for the pressure calculation, 

~ n + l = u ~ + l = O  at x = + l  (18) 
Equation (17) is obtained by taking the divergence of equations (1 5) and (16) and by imposing that 
(du/dx + ku)R+' vanishes identically. In (15)-(18) the superscript indicates the time level, e.g. 
t = nAt, At being the time step. The momentum equations (15) and (16) are integrated by the 
backward Euler scheme which is O(At). As an explicit forward Euler scheme would be constrained 
by a severe restriction on the time step, i.e. At 6 constant/M4, an implicit scheme is chosen because 
of its stability properties. Second-order accuracy in time is achieved on the viscous terms by 
Richardson extrapolation. The time marching scheme is accomplished in three stages. 

It should be mentioned that in 2-D or 3 - D  codes, the Richardson extrapolation is only 
performed on the viscous part of the Navier-Stokes equations. The non-linear terms are very often 
treated by a second order explicit scheme. Richardson extrapolation yields effectively second order 
accuracy in contrast with the Crank-Nicolson scheme which does not improve very much the time 
in tegra t i~n .~  The first solution is obtained by a time integration from t to t + At and will be denoted 
by v'. Afterwards, the scheme (1 5)-( 18) is performed in two steps of At/2 siize, producing a solution 
v*. The extrapolation formula: 

(19) p + l  - - 2v" - v +  

gives the final result at  the new time level. 
Several boundary conditions are applied to (17): 
(a) The inviscid pressure boundary condition 

This condition is used in large 2 - D  or 3-D codes, where splitting schemes work as follows: (i) a new 
velocity field is computed by considering the non-linear terms, (ii) a Poisson equation is solved for 
the pressure, (iii) pressure gradients are added to the previous velocity field and, finally, (iv) the 
viscous terms are included and v"" is obtained. For the pressure computation in (ii), equation (20) 
is correct to O(vAt), which is a small error term for large Reynolds number flows. 

(b) The tangential viscous pressure condition (Dirichlet condition) (derived from equation (16)) 

a * U n  
p n =  --?, a t x =  - t l  

k ax 

(c) The normal viscous pressure condition (Neumann condition) (derived from equation (1 5)) 
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(d) The modified normal pressure condition 

a v n  aPn 
ax ax 

a t x = + l  -= -vk--, 

Equation (23) is derived from (22) using the continuity equation. 
Normal pressure conditions such as (22) and (23) are used in most viscous flow computations. It 

should be noticed that boundary condition (20) does not respect the physics of the problem. 
However, equation (20) stabilizes the computation whereas equations (21) and (22) lead to 
instabilities whatever the value of the time step is4 

3.2. Influence matrix method 

The fundamental problem associated with the use of the Poisson equation for the pressure p is 
that the correct boundary conditions for p ,  which imply incompressibility, are not known a priori 
but determined implicitly by the solution. The influence matrix technique (or, as some call it, 
Green's function technique) makes it possible to obtain these boundary conditions and to satisfy 
the continuity equation exactly in the discretized problem. This has been proposed in Reference 5 
for the present l -D problem and in Reference 6 for the general case. The 2-D case is treated in 
Reference 7 using a Chebyshev polynomial approximation and in Reference 8 with finite 
differences. 

We summarize the method as applied for the present problem. For the time discretization of (1) 
the implicit scheme: 

(24) 
- v" yn+ 1 

=-grad p+OvAv"+'+(l-B)vAv" 
At 

with 0.5 d 0 < 1 is used (it is suficient to include only one gradient term which is uniquely 
determined by equation (24) together with equations (2) and (7)).' For very stiff problems the choice 
of 8 > 0.5 is essential to provide for the necessary damping of the rapidly decaying solution parts. In 
the following we drop the superscript n + 1 for ease of notation. 

From equations (4)-(6) the Poisson equation 

is derived. The basis of the solution method is the fact that the continuity equation may be replaced 
equivalently by the Poisson equation for p and the condition div v = 0 on the b o ~ n d a r y . ~ ~ ~  From 
equations (6) and (7), this condition reads 

au 
ax 
- = O ,  a t x = f l  

The pressure p and normal velocity component u are determined by equations (25) and (26) and 

u = O  a t x = _ + l  (28) 
with B = kZ + (hat)-' and r contains the terms at the previous time level. 

Equations (25)-(28) are solved in three steps as follows. First, we compute a solution fi ,  li: of 
equations (251, (27) and (28) with arbitrary (e.g. zero) fi( t- 1). In general, this solution has a non-zero 
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residual (dG/dx)( 1). The desired solution p ,  u is written as a linear combination: 

P = 6 + 6,Pl + 6 z p 2  
u = u” + d,U, + d2u2 

where pi, ui are solutions of the homogeneous differential equations (Y = 0 in equation (27)) with 
linear independent boundary values, e.g. 

P I (  + 1) = 1, P z (  + 1) = 0 
P I ( -  1)=0, P z ( -  I ) =  1 

The coefficients ai are determined from equations (26) and (29): 

It is sufficient to calculate the solutions pi, ui once before starting time integration and to store only 
the ‘influence matrix’ (or its inverse) on the left-hand side of equation (31). The second step in the 
solution procedure therefore consists of solving the linear 2 x 2 equation system (31) which is 
elementary in the present case (in general a system of order of the number of discrete boundary 
points is to be solved). Once 6, and 6, are known, the correct pressure boundary values are 
available: 

(32)  

Thus, in the third step, p can be calculated from equations (25) and (32) and thereafter M from 
equations (27) and (28), and finally u is found. In this way, the solution of each time step is obtained 
by solving sequentially a set of Helmholtz equations with Dirichlet boundary conditions. These are 
discretized by the Tau method, where some care must be taken to obtain an exactly divergence-free 
s ~ l u t i o n . ~  

p(  + 1 )  = p( + I) + 6, 
p (  - 1) = p”( - 1) + 62 

3.3. Penalty method 

The pressure is often regarded as a Lagrange multiplier associated with the incompressibility 
condition. Therefore, the penalty formulation has become very popular in the recent past within 
the finite element numerici~ts.’~ ’ This practice avoids the splitting-up of the Navier-Stokes 
operator, ensures incompressibility and restates the problem only in terms of the velocity field. The 
penalty method prescribed the following relation for the pressure: 

EP + div v = 0 (33) 
where E is called the penalty parameter ( E  = lo-,.. 

the artificial compressibility technique. Inserting equation (33) into equation (l), one obtains 
Equation (33) may be viewed as an equation of state for the pressure field or a direct extension of 

a v  1 
- = - grad (div v) + VAV 
at (34) 

As a consequence, the problem (4)-(6) is replaced by: 
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-= a0 v-- a2v k2(  v +i)v- - -  kau 
at a x 2  ax 

which is a coupled system of equations. The penalty parameter whose optimal choice turns out to 
be E = lo-' (see References 4 and 9), makes the time integration of equations (35) and (36) very 
difficult as we are faced now with stiff equations. In order to overcome this difficulty, an 
unconditionally stable backward Euler scheme is applied to the right-hand sides of (35) and (36). 
Second order accuracy in time is obtained by Richardson extrapolation (see equation (19)). 

3.4. Pseudo-spectral space-time method 

M o r ~ h o i s n e , ~ ~ ~ '  proposed a Chebyshev approximation for both space and time discretiza- 
tions. The solution of equations (4)-(7) is obtained through a pseudo-spectral iterative technique, 
which generates a sequence of approximations; the solution is the limit of this sequence: 

u0,p ,---, u',--- 
vo, v',---, J l l , - -  - (37) 
pO,p',- -- ,PI ,--- 

where I denotes the current iteration index. The approximations (37) satisfy initial and boundary 
conditions on the global space-time domain, 

uyx,  t )  = u(x, 0) 
v y x ,  t )  = v(x, 0) 
Po(& t )  = P ( X ,  0) 

u'+ 1(x, t)  = U'(X, t )  + q6u'(x, t), 
I/'+ 1(x, t )  = v y x ,  t )  + qSv'(x, t ) ,  

PI+ (x, t )  = Pyx, t)  + qspyx, t), 

Every quantity is changed according to the following relations: 

(39) 

where q is an under-relaxation coefficient and where the variations (su', Svl, 6p' come from a 
Newton method and satisfy homogeneous initial and boundary conditions. 

The variation quantities at the Eth iteration are obtained from the following equations: 

In the right-hand sides of equations (40)-(42), the residues RL, RL, 

(42) 

RZ, are given by the following 
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expressions: 

Time and space derivatives are computed by using formal derivation of Chebyshev polynomials 
expansions. All details are given in Reference 11. 

Equations (40)-(42) giving velocity-pressure variations, are solved in two steps. First, pressure 
variations are obtained from a Poisson equation, deduced by taking the divergence of the 
equations (40) and (41), and using equation (42): 

Equation (46) is solved by finite differences with classical Neumann boundary conditions. 

As for residues the right-hand side of equation (46) is computed by means of the spectral 
representation. 

Then, the solution of equations (40)-(42) rests upon a centred finite-difference scheme based on 
the Chebyshev collocation points (in space and time). The time derivatives in equations (40) and 
(41) are approximated by an implicit Crank-Nicolson scheme. 

To reduce the number of harmonics in time discretization, the total time integration domain 
may be divided into subdomains. The iterative process is performed in each subdomain; the 
initialization of the next time subdomain is given by the values of velocity and pressure obtained at 
the end of the previous subdomain. 

4. CHOICE O F  THE INITIAL VELOCITY FIELD 

It is usually agreed that the initial velocity field for the Navier-Stokes equations has to satisfy the 
boundary conditions and to be divergence-free. However these conditions are not sufficient to 
generate a solution which is regular in the whole space-time domain. For example, for the present 
2-D Stokes problem (4)-(7) let us consider the initial velocity field: 

u~(x) = - k ( l  - x 2 ) ,  (48) 
(49) I( uo(x) = 4x(x2 - 1) 

The associated pressure can be obtained from the Poisson equation: 

whose solution is of the form: 

p,(x) = C, sinh kx + C, cosh kx (51) 
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The two constants are derived from the imposition of the boundary conditions. The Dirichlet 
condition (21) yields 

- 2 4 ~  
Po = PID = ___ sinh kx 

k sinh k 

whereas the Neumann condition (22) leads to 

- 8~ 
P O  = PIN = a sinh kx (53) 

Obviously we do not have a unique pressure distribution as should be expected for a regular 
solution. The compatibility condition which the initial velocity field should satisfy to have a regular 
solution12 is violated by equations (48) and (49). The condition expresses that the pressure 
calculated with the Dirichlet condition coincides with the pressure obtained by using the Neumann 
condition. As a consequence the solution of equations (4)-(7) with initial conditions (48) and (49) 
will have singularities at the initial instant t = 0. From these initial singularities, difficulties with 
numerical solutions will show up. This will in fact be confirmed by our numerical results. 

To generate a compatible initial field, we consider now as initial velocity field the first 

"\ 
Figure 1. Initial pressure distribution p, (x) :  equations (52), (53) and (56) 
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Figure 2. Initial velocity distribution uo(x): equations (48) and (54) 

eigensolution of the Stokes problem (l), (2), namely 

u ~ ( x )  = - cos cash kx + cash k cos PIX 

vo(x) = kcos ,ul sinh kx + ,ul cosh k sin p1x 
where 

Here, the pressure satisfies both Dirichlet and Neumann conditions and is given by: 

p o  = p,, = - V C T l _ _ _  ‘OS ” sinh kx 
k cosh k 

(54) 
(55 )  

Figures 1-3 show the various components of both initial fields on the 1x1 <I 1 range. 
For the space-time pseudo-spectral method, it is necessary to provide an initial profile for the 

pressure field. The Dirichlet pressure (equation (52)) will be systematically used with the first initial 
field, whereas (56) is used in case 11. 

5. RESULTS 

In order to compare the various numerical methods and to examine the influence of the initial 
conditions and pressure treatment, a computed decay-rate 6 is defined as fclllows: 

- 1 u(x=O,t + T )  
%,TI = - - In 

VT U(X = 0, t )  (57) 

The reference velocity is taken at x = 0 as the maximum value is reached at that point (Figure 2). 
We will choose T= 1. In addition to ifco, which is computed from the actual solution, a 
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2 

Figure 3. Initial velocity distribution uo(x): equations (49) and (55) 

theoretical decay-rate may be estimated. For the time differencing scheme (24) and for the ith 
eigenmode g i ( t )  = exp ( - vaiAt) ,  one gets 

- 1 1 - ( 1  - 8)vaiAt 
i?bred = __in 

vAt 1 + 0voiAt 

where 8 = 0 5  corresponds to the Crank-Nicolson scheme and 0 = 1 corresponds to the Euler 
backward scheme. Therefore, one may easily compute the predicted 5 for the Richardson 
extrapolation (19). 

All the computations are carried out for the first Fourier mode k = I and a kinematic viscosity 
v = 1. With these parameters, the solution decreases by four orders of magnitude in 0 < t < I. The 
time step for the first three methods is fixed at At = 0.01. The spatial cut-off of the Chebyshev 
representations (14) is M = 16, which is sufficient to achieve spectral accuracy for the space 
discretization (at least 10 correct decimal places). 

An important aspect of time integration is the stiffness of the equations, which becomes more 
and more serious with increasing Chebyshev cut-off M ,  where rapidly decaying eigenmodes are 
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excited by the initial distribution (case I). The damping factor according 110 equation (58),  

1 - (1 - 19)v~iAt 
1 + Qva,At (59) 

Table I. Comparison between the computed decay rate and the theoretical value. c1 = 9.3137399, v = I ,  
k = 1, spatial cut-off M = 16, time t = 1, initial field I 

Explicit pressure 
calculation Influence matrix Penalty 
Section 3.1 Section 3.2 Section 3.3 
Time step Time step Time step 
At = At = lo-' At = 1 P 2  

Space-time 
pseudo-spectral 
Section 3.4 

B.C. (20) q 0 . 1 1  

B.C. (21) unstable 

B.C. (22) unstable 0 = 051,6,, = 9.31 1270 

0 = 0.50, a[,,, 1, = 9.325624 E = 10- ', ~ 7 , ~ .  , ]  = 9.298721 

E = lo-', 6ro.ll = 9.301965 Atma' 

Time monodomain: 

= 0012 
a[,, = 9.465 1 

= 9.288619 Cpred = 9.320415 M ,  = 256 

I - , - ,  

B.C. (23) 6 [ o , i j  
= 9.297928 

Cpred = 9.301570 

6pred = 9.311807 E = 10- I ',6[o,ll = 9.301926 10 time subdomains 
M ,  = 16 for each subdom. 

e = 0.52, a , ,  = 9.302607 6, ,, = 9.1450 
Cpred = 9.303216 

20 time subdomains 
e = 0.53, a[,, = 9.294032 cpred = 9.301570 M ,  = 8 for each subdom. 

0 pred = 9.29464 1 rF,o,ll = 8-0121 

B.C.: Boundary Number of subdivisions 
condition of the first time 

integration interval: 10 

bf,: time cut-off 
Initial pressure: 
equation (52) 

Table 11. Comparison between the computed decay rate and the theoretical value. o1 = 9.31 37399, v = 1, 
k = 1, spatial cut-off M = 16, time t = 1, initial field 11 

Explicit pressure 
calculation Influence matrix Penalty 
Section 3.1 Section 3.2 Section 3.3 
Time step Time step Time step 
At = lo-' At = lo-' At = 

Space- time 
pseudo-spectral 
Section 3.4 

B.C. (21) unstable 

B.C. (22) unstable 

B.C. (23) 6[0,1] 
= 9.297928 

Cpred = 9.301570 

B.C. Boundary 
Condition 

0 = 0.50, 610,11 = 9.320482 
gpred = 9.320481 

O=0.51,~1,,l,=9.311796 
@p,ed = 9.3 1 1796 

e=o~2,6 , , , ,~=9.303i27  
c p r e d  = 9.303 127 

6 = 0.53, 6[,,1l = 9.294474 
cored = 9.294474 

No subdivision of 
the first time 
integration interval 

E = lo-', 6[,,,] = 9.29872 

E = 10-7,610,11 = 9.30196 

E =  10-1',6~,,,1=9~30192 

Time monodomain: 
kf, = 256 
At,,,= 0012 
0,0,11 = 9.3137396 

10 time subdomains 
hr, = 16 for each subdom. 
610,11 = 9.3137398 

Cpred = 9.301 570 20 time subdomains 
M', = 8 for each subdom. 

= 9.3137398 

M,: time cut-off 
Initial pressure: 
equation (56) 
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tends to - (1 - 8)/8 as va,At goes to infinity. For 8 = 0.5 the damping factor tends to - 1 so that 
oscillations occur and the higher modes are not damped. For 8 = 1 this factor goes to zero and all 
the higher modes disappear. 

Results are displayed in Table I for the first initial velocity field (I) and in Table I1 for the second 
field (11). They will be analysed for each method. 

5.1. Explicit pressure calculation 

In this case, the results at t = 1 are not sensitive to the initial conditions. The same behaviour is 
observed for both initial velocity fields. However the accuracy of the time integration depends 
strongly on the applied boundary conditions for the pressure computation. 

The inviscid pressure condition (20) leads to a computed decay-rate which has only one 
significant digit. This dismal performance is essentially due to an error occurring in a boundary 
layer induced by imposing a wrong ~ o n d i t i o n . ~  The tangential and normal pressure conditions (21) 
and (22) are unstable. 

Even if the time step is reduced to values of the order of an explicit conditionally stable scheme, 
i.e At < cM4 (At - the instability arises after several hundreds of time steps and diverges very 
slowly. The elaboration of an exact Tau method’ instead of truncating the matrix system for the 
boundary conditions fulfilment does not help to cure the problem. The fourth case (equation (23)), 
where the continuity equation has been used, improves the decay-rate to a value of Ore, = 

9.297928 which should be compared to (Tpred = 9-301570. As mentioned earlier, this kind of 
boundary condition has been extensively applied in the finite difference approximation and 
appears to be a good choice, when the pressure comes from a Poisson equation. 

5.2 Influence matrix method 

The influence matrix method is very well suited to handle the pressure calculation and fulfilment 
of the continuity equation. This method treats both initial velocity fields comparable well if the 
stiffness is handled properly. The only appreciable error left in the numerical results seems to be the 
time-differencing error. This can be seen from the results for case I1 (Table 11) where the numerical 
6[,,, is indeed in complete agreement with the predicted value (58). Case I1 presents only time 
differencing errors and as the velocity field respects both normal and tangential pressure boundary 
conditions, the spatial discretization induces only negligible error. 

To minimize initial time-differencing errors in general applications and to improve the stiffness 
treatment in case I of the present problem, a reduced time step is used over the first At interval. This 
procedure prevents the numerical solution being polluted by earlier time-stepping errors. 

For this case (Table I), the Crank-Nicolson scheme (8 = 0.5) fails to produce good results when 
the first time interval is not subdivided. Considerable oscillations in 6[0,nAt1 occur as n goes to 100. 
Therefore, the first At is subdivided into 10 subintervals and 8 is taken greater than 0.5. The number 
of correct decimal places increases with 8, indicating that the higher eigenmodes are sufficiently 
damped out. One may conclude that the time differencing scheme, equation (24), needs a value for 
6 > 0.5 in order to treat properly the stiffness character of the discretized system. 

5.3.  Penalty method 

independent of the initial velocity field. 
Like the explicit pressure computation, the performance of penalty method is totally 

Of course, in this case, the choice of the penalty parameter is critical. An exploration of the E 
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range between lo-' and Lower E values 
( l O - ' O . .  . lo- 14) induce round-off errors, whereas higher E values (lo-'. . . lop6) do not provide 
excellent computed 6[o, 1l values. The good behaviour of E = lo-" in both tables is purely 
fortuitous. 

The time integration of the penalty method calls for a further comment. As the optimal choice of 
E is equations (35) and (36) present very high values for the coefficients of second-order 
derivatives. This particular behaviour imposes treating the right-hand sides implicitly by the 
backward Euler-scheme and second-order accuracy in time is only recovered by the Richardson 
extrapolation. 

The extension of this procedure to 2-D and 3-D Chebyshev spectral representation for the full 
Navier-Stokes equations is not obvious and requires further investigation due to the stiff character 
of the penalized equations. 

shows that the optimal choice is E =  

5.4. Pseudo-spectral space-time method 

Owing to the excellent accuracy of the time scheme used in this method, the comparison is done 
between the computed decay rate Cc0, 

In the case of a mono-domain in time, a very large cut-off M ,  = 256 was chosen to obtain a value 
for the maximum time-step At of the same order of magnitude as in the otheir method. The iterative 
process is stopped when the maximum values of the variations 6uz, 6d, 6p" are 6 lo-''. For the 
initial field I (Table I), the cL0, value does not compare favourably with the theoretical value. The 
iterative process needs an initial pressure field and a computational speed-up is obtained if that 
pressure field is well chosen. The expression (52) is not a good guess from this point of view. The 
computation performed with the pressure (53) satisfying the Neumann condition yields a better 
result Cro, = 9.3133. For the second case (Table 11) the full pseudo-spectral scheme achieves 
spectral accuracy. Dirichlet and Neumann conditions are satisfied for the initial pressure field 
and the solution has sufficient smoothness properties to be approximated with high accuracy 
by Chebyshev polynomials. 

The time domain may be subdivided into smaller subdomains to producle the solution with less 
computing effort. For example, the use of 10 subdomains each of them with 17 harmonics, cuts the 
execution time by a factor of two compared to the mono-domain approach. 

The multidomain procedure gives however poor results for the initial field I. The Cro, 1l value is 
even worse for 20 time subdomains with M ,  = 8. In each subdomain, the spectral calculation is 
based on only a few harmonics for a wrong choice of the initial pressure. 

For the second field I1 (Table 11), no noticeable difference is observed between 10 and 20 
subdomains, and the computed Cf0, 1l is in excellent agreement with the theoretical value. 

Additional results for this problem within the framework of this pseutlo-spectral space-time 
method are presented in Reference 13. More initial fields are considered, and the influence of a 
Chebyshev staggered grid is carefully examined. 

and the theoretical value o1. 

5.5. Remark 

The comparison of computing times is quite difficult. The authors worked independently on 
different computers and used different programming languages. One of us (L.K.) solved this test 
problem with CHANSONSs6 3-D code written in PL/l, which has a large overhead cost for the 
Stokes problem at hand. Therefore, it was decided to avoid such a comparison, which is 
meaningless in this context. 
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6. CONCLUSIONS 

The numerical results presented here show that the explicit pressure calculation does not give good 
results. The influence matrix method, penalty and space-time pseudo-spectral algorithms give the 
best results, taking into account the accuracy of time schemes. Particularly, this pseudo-spectral 
space-time technique allows us to reach full space and time spectral accuracy and, here, the 
computed are, 

From the mathematical point of view, the initial velocity field must satisfy the compatibility 
condition so that the resulting pressure is required to satisfy both Neumann and Dirichlet 
boundary conditions at every time and therefore also at the initial time t = 0. The penalty method 
does not require such a condition as the incompressibility constraint is slightly relaxed and, 
furthermore, the problem is reformulated only in terms of velocity components. 

If possible the initial velocity field should be elaborated so that no singularity occurs at the initial 
time. This regularity enforcement is essential for the pseudo-spectral space-time scheme as it is 
based on a global expansion. However, finite difference schemes in time are also sensitive to this 
condition as was observed by the influence matrix method process, when applied to the first initial 
field. 

In most applications, however, it will be very difficult to build initial compatible fields. Therefore 
the numerical algorithm has to be designed in such a way that it has sufficient damping properties 
to cope with the initial singularities at the very beginning of the time-integration. 

agrees with the theoretical value ol .  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

REFERENCES 

L. Kleiser, Numerische Simulationen zum laminar-turbulenten CJmschlagsprozeJ der ebenen Poiseuille-strdmung, 
Dissertation Karlsruhe, 1982, Kernforschungszentrum Karlsruhe, KFK 3271. 
D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM monograph 
no. 26, Philadelphia, Pennsylvania, 1977. 
Y. Morchoisne, ‘Resolution des equations de Navier-Stokes par une methode pseudo-spectrale en espace-temps’, La 
Recherche Airospatiale, no. 1979-5, pp. 293-306, (English translation). 
M. Deville and S. A. Orszag, ‘Splitting methods for incompressible problems’, Submitted to Journal of Computational 
Physics (1983). 
L. Kleiser and U. Schumann, ‘Treatment of incompressibility and boundary conditions in 3-D numerical spectral 
simulations of plane channel flows’, in Hirschel, E. H. (ed.), Proc. 3rd GAMM Conference on Numerical Methods in Fluid 
Mechanics, Vieweg-Verlag Braunschweig, 1980, pp. 165-173. 
L. Kleiser and U. Schumann, ‘Spectral simulations of the laminar-turbulent transition process in plane Poiseuille flow’, 
Symposium on Spectral Methods for Partial Differential Equations, 16-18 August 1982, ICASE, NASA Langley 
Research Center, Hampton, Va. Proceedings published by SIAM, Philadelphia, Pa. (1984) 
P. Le Quere and T. Alziary de Roquefort, ‘Sur une methode spectrale semi-implicite pour la resolution des equations de 
Navier-Stokes d’un ecoulement bidimensionnel visqueux incompressible’, C. R. Acad. Sc. Paris, 294, Serie 11,941-944 
(1982). 
U. Schumann, ‘Direct finite difference Stokes solver’, Zamm 64, T227-T229 (1984). 
T. J. R. Hughes, W. K. Liu and A. Brooks, ‘Finite element analysis of incompressible viscous flows by the penalty 
function formulation’, J .  Comp. Phys., 30, 1-60 (1979). 
J. N. Reddy (Ed.), ‘Penalty-Finite Element Methods in Mechanics’, Applied Mechanics Division, Vol. 51, ASME 
Publication 1982. 
Y. Morchoisne, ‘Inhomogeneous flow calculations by spectral methods: monodomain and multidomain technique’, 
Symposium on Spectral Methods for Partial Differential Equations, 16-18 August 1982, ICASE, NASA Langley 
Research Center, Hampton, Va. Proceedings published by SIAM, Philadelphia, Pa. (1984). 
J. G. Heywood and R. Rannacher, ‘Finite-element approximation of the non-stationary Navier-Stokes problem (I)’, 
SIAM Journal of Numerical Analysis, 19, 275-311 (1982). 
F. Monitigny-Rannou, ‘Influence of compatibility conditions in numerical simulation of inhomogeneous incompress- 
ible flows’ Pandolfi M-Piva R (Eds). Proc. 5th. GAMM Conference on Numerical Methods in Fluid Mechanics, Vieweg- 
Verlag, Braunschweig, 1984, pp. 234-242. 




